If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/5y^2+3=11
We move all terms to the left:
2/5y^2+3-(11)=0
Domain of the equation: 5y^2!=0We add all the numbers together, and all the variables
y^2!=0/5
y^2!=√0
y!=0
y∈R
2/5y^2-8=0
We multiply all the terms by the denominator
-8*5y^2+2=0
Wy multiply elements
-40y^2+2=0
a = -40; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-40)·2
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*-40}=\frac{0-8\sqrt{5}}{-80} =-\frac{8\sqrt{5}}{-80} =-\frac{\sqrt{5}}{-10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*-40}=\frac{0+8\sqrt{5}}{-80} =\frac{8\sqrt{5}}{-80} =\frac{\sqrt{5}}{-10} $
| x/19=3x+7 | | 3(h+8)+15=63 | | -18n=-18n | | 3x+4-8=27 | | n+7=35^5 | | 16=d-74 | | (5m-3)-(m+7)=4m-10 | | 2(1y+-3)=0 | | c-33=48 | | 2+2m+8m=9m+10 | | 12=3(y-11) | | n+7=35|5 | | -27/r=-9 | | 2(h+1)+1=9 | | -2(j-4)=-4 | | 7p+5-1=7p+4 | | 2(r-11)+11=89 | | P+36=-6(8p-6) | | -7b+7=4(8-8b) | | j-10=0 | | -2x+x=-3x-2 | | 2x+50=3x-10 | | 11+5x=1-2x+2x | | 4f-12=4f-1 | | 3=u-15 | | 4y-28=-18+3y | | 11+5=1-2x+2x | | -6v+4-4=4-5v | | 3=4-w | | 6=m+2m | | 19=1-3x+6 | | 3(-4+n)=-21 |